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Abstract: Monitoring the water clarity of lakes is essential for the sustainable development of 12 

human society. However, existing water clarity assessments in China have mostly focused on 13 

lakes with areas > 1 km2, and the monitoring periods were mainly in the 21st century. In order 14 

to improve the understanding of spatiotemporal variations in lake clarity across China, based 15 

on the Google Earth Engine cloud platform, a 30 m long-term LAke Water Secchi Depth (SD) 16 

dataset (LAWSD30) of China (1985–2020) was first developed using Landsat series imagery and 17 

a robust water-color-parameter-based SD model. The LAWSD30 dataset exhibited a good 18 

performance compared with concurrent in situ SD datasets, with an R2 of 0.86 and a root-mean-19 

square error of 0.225 m. Then, based on our LAWSD30 dataset, long-term spatiotemporal 20 

variations in SD for lakes > 0.01 km2 (N = 40,973) across China were evaluated. The results show 21 

that the SD of lakes with areas ≤ 1 km2 exhibited a significant downward trend in the period 22 

1985–2020, but the decline rate began to slow down and stabilized after 2001. In addition, the 23 

SD of lakes with an area > 1 km2 showed a significant downward trend before 2001, and began 24 

to increase significantly afterwards. Moreover, in terms of the spatial patterns, the proportion 25 

of small lakes (area ≤ 1 km2) showing a decreasing SD trend was the largest in the Mongolian–26 

Xinjiang Plateau Region (MXR) (about 30.0%), and the smallest in the Eastern Plain Region (EPR) 27 

(2.6%). In contrast, for lakes > 1 km2, this proportion was the highest in MXR (about 23.0%), and 28 

the lowest in the Northeast Mountain Plain Region (NER) (16.1%). The LAWSD30 dataset and 29 

the spatiotemporal patterns of lake water clarity in our research can provide effective guidance 30 

for the protection and management of lake environment in China.   31 

Keywords: water clarity; Secchi Depth (SD); Landsat; Google Earth Engine; long-term 32 

1. Introduction 33 

Lakes are invaluable resources for human societies, providing value in terms of water 34 

supply, energy production, commerce, food production, and human health (Bastviken et al., 35 

2011; Palmer et al., 2015). However, like many other ecosystems, lakes are sensitive to multiple 36 

co-occurring environmental pressures, notably climate change, nutrient enrichment, organic 37 

and inorganic pollution, and human activities (Brönmark and Hansson, 2002). Nowadays, with 38 

the rapid development of the economy and the growth of the population in China, the 39 

intensification of human activities and pollution from industry and agricultural production 40 
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have caused severe damage to lakes (Ma et al., 2014; Wang and Yang, 2019; Zhou et al., 2019). 41 

According to recent research and national survey reports (Barnes, 2014; Wang and Yang, 2019; 42 

Ministry of Ecology and Environment of the People’s Republic of China, 2020), approximately 43 

70% of inland water in China is polluted, 28% of the assessed lakes are eutrophic, and about 140 44 

million people depend on getting water from unsafe open sources. The deterioration of the lake 45 

ecosystem has threatened public health and the safety of both humans and aquatic organisms 46 

(Guo, 2007). Therefore, effective monitoring and evaluation of the environment of lakes across 47 

China is necessary.  48 

Water clarity is one of the most intuitive, popular, and important parameters for describing 49 

the optical components of water bodies (Carlson, 1977; Liu et al., 2020), and is generally 50 

measured in terms of Secchi Depth (SD) (Odermatt et al., 2012; Carlson, 1977). Since water clarity 51 

is co-determined by the suspended matter, planktonic algae, and colored dissolved organic 52 

matter in the water column, it is usually adopted as a practical comprehensive metric for water 53 

quality assessment (Kloiber et al., 2002; Mccullough et al., 2012). Although a variety of physical, 54 

biological, and chemical parameters have been proposed to analyze the condition of water, 55 

water clarity has been utilized for a century as an effective and simple metric (Cuffney et al., 56 

2000; Lee et al., 2018). Recently, water clarity was also recognized as an important parameter in 57 

support of the United Nations Sustainable Development Goal SDG 6.3.2 evaluation reports 58 

(Shen et al., 2020). Therefore, water clarity is a significant indicator that can be used to monitor 59 

and evaluate the comprehensive conditions of water.  60 

Today, with the development of remote sensing technology, significant numbers of satellite 61 

images are continuously being acquired. Taking into account the high-frequency revisits, large 62 

area of coverage, and the historical archive of remote sensing data available, increasing attention 63 

has been paid to the applications of remote sensing datasets in water clarity assessments (Li et 64 

al., 2020a; Liu et al., 2019; Xue et al., 2019). The evaluation of water clarity from a variety of ocean 65 

color satellite sensors has been performed (Li et al., 2020a; Feng et al., 2019; Wang et al., 2018; 66 

Shi et al., 2018). For example, Shen et al. (2020) used Sentinel-3 data to evaluate the water clarity 67 

of 86 lakes (> 30 km2) in eastern China; Liu et al. (2021) estimated the SD (water clarity) trends 68 

of lakes with an area > 50 km2 in the Tibetan Plateau using MODIS data between 2000 and 2019. 69 

However, due to the coarse spatial resolution and the relatively short-term historical archives of 70 

these ocean color sensors, their applications were limited to large lakes and reservoirs, and the 71 

study periods were concentrated in the past two decades (Li et al., 2020a). The statistics on lakes 72 

with an area ≤ 1 km2 are scant, and understanding of the variations in SD before the 21st century 73 

is limited (Downing et al., 2012; Biggs et al., 2017; Li et al., 2020b). In order to improve the water 74 

environment monitoring capability, 30 m Landsat series data have recently been used for SD 75 

evaluation (Page et al., 2019; Dona et al., 2014). Because of the fine spatial resolution (30 m), long 76 

historical archives (> 35 years), and suitability for water clarity assessment, Landsat series data 77 

are considered to be “ideal” for the long-term and fine spatial resolution monitoring of lake SD 78 

(Olmanson et al., 2008; Olmanson et al., 2016; Li et al., 2020a; Zhang et al., 2021b). For example, 79 

Li et al. (2020a) utilized the Landsat series of images to monitor the SD trends in the Xin’anjiang 80 

Reservoir between 1986 and 2016; Yin et al. (2021) tracked the SD changes in Taihu from 1984 to 81 

2018 based on Landsat 5 and 8 images. Recently, in order to conduct the first high-spatial-82 

resolution investigation of lake SD across China, significant amounts of Landsat 8 data from 83 

2014–2017 were used in the work of Song et al. (2020). However, these studies were limited to 84 
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individual areas or periods. Due to the requirement for huge amounts of computation and large 85 

storage capabilities, as well as the need for a robust uniform SD model, there are very few 86 

examples of national-scale long-term SD estimations using Landsat imagery (Yin et al., 2021; 87 

Kloiber et al., 2002; Page et al., 2019).  88 

Fortunately, with the emergence of the Google Earth Engine (GEE) cloud computing 89 

platform (Gorelick et al., 2017), its high-performance, intrinsically parallel computing services 90 

can easily meet the requirements for very large computational resources (Zhang et al., 2020; 91 

Liangyun Liu et al., 2021). Additonally, because the GEE platform integrates multipetabyte 92 

analysis-ready Landsat surface reflectance data, and these data are intercalibrated between 93 

different Landsat sensors, it presents an opportunity to conduct long-term land surface analyses 94 

at the pixel level (Racetin et al., 2020; Zhang et al., 2021b). Accordingly, a robust SD model is the 95 

only requirement for fine-resolution, long-term SD evaluation across China. Lately, some 96 

studies have found that the SD is well correlated with water color parameters (e.g., hue angle 97 

and the Forel–Ule Index (FUI)) (Wang et al., 2021; Chen et al., 2021; Van Der Woerd and Wernand, 98 

2018). Since water color parameters can be retrieved at the global scale and over long time spans 99 

(Wang et al., 2021; Wang et al., 2018), it is possible to retrieve long-term water clarity over large 100 

areas based on these parameters (Wang et al., 2021; Wang et al., 2020). For example, Wang et al. 101 

(2020) recently developed a robust SD model based on water color parameters, and the model 102 

was successfully applied to MODIS data to develop a nationwide 500 m long-term SD dataset 103 

between 2000 and 2017. Accordingly, a feasible solution for high-spatial-resolution and long-104 

term SD estimation across China could be provided by incorporating the GEE cloud platform 105 

and the water-color-parameter-based SD model.    106 

Therefore, in order to provide a comprehensive understanding of nationwide 107 

spatiotemporal variations in lake water clarity, we first developed a long-term 30 m LAke Water 108 

SD dataset of China from 1985 to 2020 (LAWSD30) using Landsat series data and a water-color-109 

parameter-based SD algorithm with the assistance of the GEE cloud platform. Then, the 110 

LAWSD30 dataset was employed to evaluate and recognize the spatiotemporal variations in SD 111 

for lakes with areas > 0.01 km2 (N = 40,973) across China in the period 1985–2020. Our results 112 

can provide effective data support for the management and protection of lake water 113 

environment.  114 

2. Datasets  115 

2.1. Landsat series satellite datasets   116 

Taking into account the frequent contamination of cloud and cloud shadow, it is hard to 117 

develop a spatially continuous product throughout China with only one year of Landsat images 118 

(Zhang et al., 2019a). Therefore, we used images from ± 1 year of the target year to generate each 119 

product, and a total of 12 SD products with a three-year time step were developed for 1985–120 

2020. All available Landsat series Level-1 precision terrain (L1TP) surface reflectance datasets 121 

(about 46 terabytes of data), including Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced 122 

Thematic Mapper-plus (ETM+), and Landsat 8 Operational Land Imager (OLI) imagery, 123 

acquired in the summer (June 1–September 30) from 1985 to 2020, were used via the GEE cloud 124 

computing platform. The summer months were chosen because the water clarity is relatively 125 

stable in this season and suitable for monitoring with remote sensing imagery (Kloiber et al., 126 

2002; Mccullough et al., 2012; Singh and Singh, 2015; Song et al., 2020). In addition, since the 127 
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Landsat L1TP data were intercalibrated across different Landsat series sensors, the collected 128 

L1TP data were consistent and suitable for pixel-level time series analysis (Racetin et al., 2020). 129 

However, since the Landsat 7 scan line corrector (SLC) failed in 2003, the Landsat 7 images 130 

acquired thereafter exhibited wedge-shaped scan gaps (referred to as SLC-off images) (Usgs, 131 

2003). Therefore, except for 2012–2014, only Landsat 7 data before 2003 were used for the 132 

development of our SD products (Fig. 1b). Since Landsat 5 retired in 2011 and Landsat 8 data 133 

were only available after 2013, the valid Landsat observations from 2012 to 2014 were 134 

insufficient (Fig. 1a). Therefore, a few Landsat 7 SLC-off images from 2012 to 2014 were used as 135 

substitutes to fill the gaps between 2012 and 2014. Fig. 1b shows the final number of Landsat 136 

series images used to generate the SD product for each nominal year.  137 

 138 

Figure 1. Valid Landsat 5 and 8 observations in China from 2012 to 2014 (a) and statistics of Landsat images 139 

used to develop the product for each nominal year (b). Note: L8., Landsat 8; L7., Landsat 7; L5., Landsat 5. 140 

2.2. Auxiliary inland water products 141 

The annual 30 m Joint Research Centre Global Surface Water (JRC-GSW) database was used 142 

to extract water body regions for each SD product (Pekel et al., 2016). The JRC-GSW was 143 

developed based on multiple classification criteria and time-series Landsat 5, 7, and 8 data from 144 

1984 to 2019, and archived to the GEE platform. The water pixels in the JRC-GSW were labeled 145 

as permanent and seasonal water pixels based on the frequency of being detected as water 146 

bodies (Pekel et al., 2016). The overall user and producer accuracies for permanent water were 147 

99.6% and 98.6%, respectively, versus 98.6% and 75.4% for seasonal water (Pekel et al., 2016). 148 
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Following Chen et al. (2021), in this study, only the pixels marked as permanent waters in the 149 

JRC-GSW were utilized to extract water regions to reduce the disturbance from aquatic 150 

vegetation in seasonal waters.  151 

Additionally, the existing Chinese lake inventories (Ma et al., 2011; Song et al., 2020; Chen 152 

et al., 2021) and the Reservoirs and Dams vector database (Song et al., 2018) were also collected 153 

and used to extract lakes for each SD product. 154 

2.3. In situ SD datasets  155 

 In order to quantitatively evaluate the performance of the LAWSD30 dataset, a total of 1502 156 

in situ SD measurements of 208 lakes between 1992 and 2019 were collected from the China Lake 157 

Scientific Database (http://www.lakesci.csdb.cn), the National Earth System Science Data Center, 158 

National Science & Technology Infrastructure of China (http://lake.geodata.cn), and work by 159 

Wang et al. (2020) and Liu et al. (2020). Due to the scarcity of field-measured SD records before 160 

the 1990s, only SD products after 1992 were validated. Since in situ SD measurements within 161 

seven days of satellite overpasses were suitable for the validation of the remote-sensing-derived 162 

SD product (Song et al., 2020), the collected SD measurements were coincident with the Landsat 163 

data used in our study within a window of ± 7 days. The distributions of the in situ SD records 164 

collected to validate products for different nominal years are shown in Fig. 2a–c. The probability 165 

density of the collected SD measurements used for each SD product was calculated and is 166 

exhibited in Fig. 2d. It can be seen that the collected SD measurements cover a variety of water 167 

clarity conditions and are distributed throughout China (Fig. 2). The values of our collected SD 168 

data range from 0 to 7 m, covering lakes from clear to eutrophic. Therefore, the collected in situ 169 

data can provide a reliable accuracy examination for our LAWSD30 dataset. 170 

 171 
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Figure 2. Details of the in situ measured SD datasets. (a–c) The geographical distributions of SD samples 172 

used to validate the accuracies of the corresponding SD products; (d) the probability density of the 173 

collected SD measurements used for each target SD product, used to show the SD range where the collected 174 

in situ SDs are mainly concentrated.  175 

3. Methodology 176 

In order to assess the long-term trends of SD in Chinese lakes, four steps were taken in our 177 

study (Fig. 3). First, based on the time-series Landsat images and the JRC-GSW water products 178 

archived in GEE, a summer cloud-free composite image was generated between 1985 and 2020 179 

with an interval of three years using the best-available-pixel (BAP) compositing method. Then, 180 

based on the generated cloud-free composite images, the long-term LAWSD30 dataset from 181 

1985 to 2020 (including 12 products, representing 1986, 1989, 1992, 1995, 1998, 2001, 2004, 2007, 182 

2010, 2013, 2016, and 2019) were developed using a robust SD model based on water color 183 

parameters. Next, the accuracy of our developed LAWSD30 dataset was evaluated using the 184 

collected concurrent in situ datasets. Finally, with the assistance of the existing Chinese lake and 185 

reservoir datasets and high-resolution images in Google Earth, the assessment of the long-term 186 

SD trends for lakes > 0.01 km2 across China was conducted using the developed SD products.  187 

 188 
Figure 3. A flowchart of the long-term LAWSD30 dataset development steps and the long-term SD trend 189 

assessment of lakes in China. Note: LAWSD30., 30 m LAke Water SD dataset of China. 190 

3.1. Generation of cloud-free composites using best-available-pixel (BAP) composition method 191 

Since summer is suitable for SD mapping with remote sensing imagery (Mccullough et al., 192 

2012; Singh and Singh, 2015; Song et al., 2020), cloud-free summer composites of Landsat data 193 

for 12 three-year time steps were compiled from 1985 to 2010. Generally, the median and mean 194 

composite methods were used to generate cloud-free images in the SD assessing studies (Li et 195 

al., 2020a; Wang et al., 2020; Liu et al., 2020). However, since multisource sensors (TM, ETM+, 196 

and OLI) were used in this study, the different band settings between these sensors made the 197 

parameters of the algorithm specific to each sensor (Li et al., 2020a; Garnesson et al., 2019). 198 

Because the median and mean composite methods will change the original radiation value of 199 

the pixel (Xie et al., 2019; Griffiths et al., 2014), the composite pixels derived from these general 200 

methods are difficult to trace back to the sensor from which they originated. Therefore, these 201 

methods are not well suitable for our research. Recently, White et al. (2014) proposed a BAP 202 
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method to generate cloudless composites on a large area. Since BAP compiles cloud-free images 203 

by selecting the best available observation based on user-defined criteria (Gomez et al., 2016; 204 

Griffiths et al., 2013), the BAP composites can retain the source image information from which 205 

they came. In addition, since BAP can ensure phenological consistency between multitemporal 206 

BAP composites by setting the acquisition day-of-year (DOY) criteria (Griffiths et al., 2014; Chen 207 

et al., 2021), it is suitable for multiyear change detection and assessment (Griffiths et al., 2014; 208 

Gomez et al., 2016; Hermosilla et al., 2015; Zhang et al., 2021a). Accordingly, the BAP method 209 

was used to generate cloud-free composites. Our team recently used BAP to develop summer 210 

composites for water color mapping (Chen et al., 2021). Following him, the DOY criteria, the 211 

cloud and cloud shadow criteria, and the atmospheric opacity criteria were selected to generate 212 

the BAP composites. The score for each criterion was summed, and the observation with the 213 

highest score was selected as the BAP composite. The parameter values for the criteria used were 214 

obtained from Chen et al. (2021).  215 

However, since floods and rainfall in summer will bring suspended particles into water 216 

bodies, making the SD of water bodies much lower than usual (Murshed et al., 2014; Liu et al., 217 

2021), it is also necessary to reduce the impact of these factors on the BAP composites to ensure 218 

the reliability of the long-term SD trend assessment. Here, the normalized difference turbidity 219 

index (NDTI) (Lacaux et al., 2007) was used to indicate the turbidity of the water (Eq. (1)). As 220 

the SD of water decreases, the NDTI of water increases (Islam, 2006; Lacaux et al., 2007). 221 

Therefore, the interference of floods and rainfall was restricted by only using the observations 222 

with NDTI less than the 80th quantile of their NDTI stack for BAP compositing.  223 

𝑁𝐷𝑇𝐼 = (𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛)/(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛)  (1) 

Finally, based on the intra-annual permanent water pixels detected in the JRC-GSW, water 224 

regions were extracted from the BAP composites. 225 

3.2. Inversion model of water SD 226 

Previous studies have proven that FUI and hue angle (α) are useful water color parameters 227 

for assessing the SD of inland waters (Wang et al., 2020; Chen et al., 2021; Garaba et al., 2015). 228 

Recently, these two watercolor parameters were further demonstrated to be robust parameters 229 

for retrieving SD over large areas and long-term spans (Wang et al., 2020; Pitarch et al., 2019). 230 

Therefore, the SD of the extracted permanent water regions was retrieved using a robust SD 231 

model based on FUI and α (Wang et al., 2020). The SD model showed good performance and 232 

adaptability over a variety of water clarity ranges, with a mean relative difference of 27.4% and 233 

a mean absolute difference of 0.37 m (Wang et al., 2020). There are three main steps in the SD 234 

model: 235 

(1) Calculation of the hue angle (α): The α is the angle of the line drawn anti-clockwise from 236 

the positive x-axis at y = 1/3 in the Commission on Illumination’s (CIE) chromaticity diagram 237 

(Wang et al., 2018). In order to derive the angle α, the CIE primary color tristimulus (X, Y, Z) 238 

was calculated from the reflectance in the visible bands of Landsat images first (Wang et al., 2020; 239 

Chen et al., 2021). Since ETM+/TM has only three bands in the visible range, the tristimulus of 240 

Landsat ETM+/TM was calculated using the RGB conversion method (Wang, 2018; Cie, 1932) 241 

(Eqs. (2)-(4)):  242 

X = 1.1302 𝑅(485) + 1.7517 𝑅(565) + 2.7689 𝑅(660)  (2) 

Y = 0.0601 𝑅(485) + 4.5907 𝑅(565) + 1.0000 𝑅(660) (3) 
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Z = 5.5943 𝑅(485) + 0.0560 𝑅(565), (4) 

where 𝑅 represents the band reflectance. Since OLI has four visible bands, the X, Y, and Z of 243 

Landsat OLI data were calculated using the linear weighted summation method as per Chen et 244 

al. (2021) (Eqs. (5)–(7)): 245 

X = 11.053 𝑅(443) + 6.950 𝑅(482) + 51.135 𝑅(561) + 34.457 𝑅(655) (5) 

Y = 1.320 𝑅(443) + 21.053 𝑅(482) + 66.023 𝑅(561) + 18.034 𝑅(655) (6) 

Z = 58.038 𝑅(443) + 34.931 𝑅(482) + 2.606 𝑅(561) + 0.016 𝑅(655).   (7) 

Once the tristimulus was calculated, the chromaticity coordinates (x, y) were then acquired from 246 

the X, Y, and Z (Wang et al., 2021) (Eq. (8)). Afterwards, the hue angle α was derived based on x 247 

and y (Van Der Woerd and Wernand, 2018) (Eq. (9)). However, because of the band settings of 248 

sensors, there is an offset (∆α) of the sensor-derived hue angle (Van Der Woerd and Wernand, 249 

2015). Following the ideas in Van Der Woerd and Wernand (2015), Wang (2018) recently 250 

developed polynomial deviation delta corrections for multiple sensors (Eq. (10)). Accordingly, 251 

the angle α was finally corrected using α + ∆α.  252 

𝑥 = X/(X + Y + Z), 𝑦 = Y/(X + Y + Z) (8) 

α = ARCTAN2((𝑦 −
1

3
)/(𝑥 −

1

3
)) ∗ 180/𝜋 

(9) 

∆α = a(α/100)5 + b(α/100)4 + c(α/100)3 + d(α/100)2 + e (
α

100
) + f, 

(10) 

where a–f are coefficients of the deviation delta correction, and the correction coefficients of 253 

OLI/ETM+/TM are shown in Table 1. 254 

Table 1. Polynomial coefficients for the Landsat-OLI/TM/ETM+ hue angle correction (Wang, 2018). 255 

Sensor a b c d e f 

Landsat-TM 25.851 -177.4 476.69 -653.3 463.33 -94.41 

Landsat-ETM+ 30.473 -203.4 498.8 -570.9 324.73 -56.72 

Landsat-OLI 21.355 -199.29 703.3 -1132.2 801.6 -201.34 

(2) Calculation of the FUI: The FUI for pixels in Landsat were derived from the corrected 256 

angle α based on the FUI lookup table (Novoa et al., 2013) (Table 2). Each FUI corresponds to a 257 

range of angle α.  258 

Table 2. The 21-class FUI indices and the corresponding range of hue angle α (Wang et al., 2018; Chen et 259 

al., 2021). 260 

FUI α range (°) FUI α range (°) FUI α range (°) 

1 (35.00, 42.83) 8 (160.97, 175.98) 15 (219.34, 224.87) 

2 (42.83, 49.02) 9 (175.98, 186.67) 16 (224.87, 230.23) 

3 (49.02, 60.01) 10 (186.67, 195.44)) 17 (230.23, 235.09) 

4 (60.01, 79.23) 11 (195.44, 202.05) 18 (235.09, 239.56) 

5 (79.23 106.94) 12 (202.05, 207.82) 19 (239.56, 243.66) 

6 (106.94, 137.03) 13 (207.82, 213.57) 20 (243.66, 247.25) 

7 (137.03, 160.97) 14 (213.57, 219.34) 21 (247.25, 252.00) 

(3) Calculation of the SD: Based on the calculated FUI and α, the SD was obtained following 261 

the algorithm proposed in Wang et al. (2020) (Eqs. (11)–(12)). This model had been proved to be 262 

suitable for large-area and long-term SD monitoring (Wang et al., 2020).  263 

FUI < 8, SD = 794630.86 · α−1.66 (11) 
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FUI ≥ 8, SD = 30380 · FUI−2.621 (12) 

3.3. Assessment of long-term SD trends in China’s Lakes  264 

In order to comprehensively evaluate the long-term trends in SD of natural lakes across 265 

China, lakes with areas > 0.01 km2 (more than 10 pixels) were manually extracted by referring 266 

to the Chinese lake inventories (Chen et al., 2021; Song et al., 2020), the Chinese reservoir and 267 

dam database (Song et al., 2018), and high-resolution images from Google Earth. Since previous 268 

water investigations were mainly based on MODIS and Sentinel-3 images, and focused on lakes 269 

with an area > 1 km2, the knowledge of lakes < 1 km2 was limited (Zhang et al., 2021b; Chen et 270 

al., 2021). Therefore, in our study, the extracted lakes were divided into two groups, lakes with 271 

an area > 1 km2 and lakes with an area ≤ 1 km2, to explore the SD trends in the two different 272 

areas. In order to reduce the impact of aquatic vegetation, algae bloom areas, and shallow 273 

nearshore on the lake SD assessment, the mean SD of each lake was calculated following the 274 

method in Chen et al. (2021). Specifically, the floating algae index (FAI) (Eq. (13)) (Dai et al., 2021; 275 

Hu, 2009) was first used to mask algae bloom and aquatic vegetation areas with a threshold of 276 

–0.02 (Chen et al., 2021). Then, shallow near-shore pixels were excluded by setting the 277 

corresponding threshold value for each lake (Chen et al., 2021). Pixels whose SD was less than 278 

the SD value of 80% of the pixels in a given lake were regarded as shallow near-shore pixels and 279 

excluded. After the above steps, the remaining pixels in each lake region were used to calculate 280 

the mean SD of that lake as follows:   281 

FAI = 𝑁𝐼𝑅 − (𝑅𝑒𝑑 + (𝑆𝑊𝐼𝑅 − 𝑅𝑒𝑑) × (𝜆𝑁𝐼𝑅 − 𝜆𝑅𝑒𝑑)/(𝜆𝑆𝑊𝐼𝑅 − 𝜆𝑅𝑒𝑑)), (13) 

where Red, NIR, and SWIR represent the reflectance of red, near-infrared (NIR), and shortwave 282 

infrared (SWIR) bands, and 𝜆𝑁𝐼𝑅, 𝜆𝑅𝑒𝑑 , and 𝜆𝑆𝑊𝐼𝑅 are the center wavelengths of NIR, red, and 283 

SWIR bands.  284 

The nonparametric Loess regression method (Steyerberg, 2016) was employed to delineate 285 

the long-term SD trend for each lake, and the widely used Mann–Kendall (MK) test (Yuan et al., 286 

2018; Kendall, 1990; Mann, 1945) was applied to indicate the monotonicity of the long-term SD 287 

trend. Specifically, the MK indicated the monotonic trend by using a standardized MK statistic 288 

Z (Yuan et al., 2018). Z > 0 indicated an upward trend, while Z < 0 indicated a downward trend. 289 

The indicated trend was regarded as significant only when P ≤ 0.05 (Li et al., 2020a). Since the 290 

reliability of the long-term trend analysis relied on the observation number of time series data 291 

(Li et al., 2020a; Wang et al., 2020), only the lakes that existed in at least 10 SD products were 292 

retained for our long-term SD assessment. Using the above criteria, a total of 40,973 lakes were 293 

used for time series SD analysis. 294 

4. Results 295 

4.1. Accuracy evaluation of the 30 m long-term LAWSD30 dataset  296 

The accuracy of our LAWSD30 dataset was evaluated with the collected concurrent in situ 297 

SD datasets, as illustrated in Fig. 4. From Fig. 4a, our LAWSD30 dataset exhibited a significant 298 

correlation with all collected in situ SD data, with an R2 of 0.86 and an RMSE of 0.225 m. Most 299 

of the scatter points were distributed close to the 1:1 line. Specifically, from the validation results 300 

in the 2010s, our LAWSD30 showed good performance, with an R2 of 0.92 and an RMSE of 0.211 301 

https://doi.org/10.5194/hess-2021-630
Preprint. Discussion started: 23 February 2022
c© Author(s) 2022. CC BY 4.0 License.



10 
 

m. In addition, a stable performance was also shown in the results for the 2000s, with R2 reaching 302 

0.78 and RMSE reaching 0.236 m. Furthermore, a good performance was also seen before the 303 

2000s, with an R2 of 0.69 and an RMSE of 0.059 m in the 1990s. The validation results for these 304 

different decades proved the stable performance of our LAWSD30 in different periods. It is 305 

concluded, therefore, that our LAWSD30 can be a reliable dataset for the long-term SD trend 306 

assessment of lakes in China. 307 

 308 
Figure 4. Scatterplots of the in situ measured SD data and our LAWSD30 dataset. (a) An overall scatterplot 309 

of our LAWSD30 dataset and all the collected in-situ SD data; (b–d) scatterplots of our LAWSD30 dataset 310 

and the corresponding in situ SD data in the 1990s (1992, 1995, and 1998), 2000s (2001, 2004, and 2007), and 311 

2010s (2010, 2013, 2016 and 2019), respectively. 312 

4.2. The LAWSD30 dataset in China  313 

Our developed long-term LAWSD30 dataset includes 12 SD products of the corresponding 314 

nominal years, now available at https://doi.org/10.5281/zenodo.5734071. Here, the SD product 315 

in 2019 is shown in Fig. 5. It can be found that the water bodies in our product showed a wide 316 

range of SD values (0.1 m to more than 9 m), indicating a great diversity of Chinese inland waters. 317 

Taking the famous Hu line (Hu, 1990) as the boundary, the SD of water bodies showed an 318 

obvious pattern of “high west and low east” across China. The average SD of the water bodies 319 

to the west of the Hu line was approximately 1.7 m, while the average SD of the eastern water 320 

bodies was about 0.4 m. Furthermore, regarding the famous Qinlin–Huaihe line (Liu et al., 2015), 321 

the dividing line between the north and south of China, a significant latitudinal pattern of “high 322 

in the south and low in the north” was exhibited across China. The average SD of the water 323 

bodies distributed to the north of the Qinlin–Huaihe line was about 0.72, whereas the average 324 

SD reached about 1.16 for the water bodies south of this line. The above SD patterns observed 325 

across China were in good agreement with other studies (Wang et al., 2020; Zhang et al., 2021b). 326 
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 327 

Figure 5. The 30 m SD product in China in 2019. Note: the north–south dashed line is the Hu line, and the 328 

east–west dashed line is the Qinling–Huaihe Line. 329 

Moreover, in order to illustrate the ability of our long-term LAWSD30 dataset to monitor 330 

the spatiotemporal pattern of SD in water bodies, the time-series SD results for two important 331 

lakes, Selinco Lake and Hongze Lake, are displayed and used as case studies (Fig. 6). The long-332 

term mean SD of the two lakes is shown in Fig. 7. From the perspective of the spatial pattern, it 333 

can be seen that the water area in the northern part of Selinco Lake has been increasing, and the 334 

SD of the north is generally lower than that of the central and southern areas of the lake. A 335 

significant pattern of “high center and low north” was found from the SD results for Selinco 336 

Lake. Additionally, an obvious clarity gradient with high values on the northern side and lower 337 

values on the central area and southern side could be found in Hongze Lake. These results are 338 

in good agreement with previous researches (Wang et al., 2020; Xue et al., 2019; Liu et al., 2021). 339 

Furthermore, we can see that the clarity of water in the northern part of Selinco Lake has 340 

improved in recent years, and the SD in the central and southern regions of Hongze Lake has 341 

also increased compared with 35 years ago (Fig. 6). Moreover, in terms of the SD trends, the 342 

mean SD of Selinco Lake exhibited a decreasing but insignificant trend (Z < 0, P > 0.05) in the 343 

period 1985–2020, while Hongze Lake has shown a significant, increasing SD trend (Z > 0, P < 344 

0.05) over the past 35 years (Fig. 7). Specifically, the SD curve of Selinco Lake first showed an 345 

upward trend before the 2000s, and then exhibited a decreasing trend after 2001. As for Hongze 346 

Lake, it was found to have an increasing SD trend before 2010, but the SD began to decrease 347 

after that. Similarly, some studies found the same SD change patterns in the two lakes (Liu et 348 

al., 2021; Li et al., 2016; Wang et al., 2020; Zhigang et al., 2017; Li et al., 2019). Therefore, our 349 

long-term SD dataset can provide an opportunity to quickly evaluate the temporal dynamics of 350 

SD in water bodies at low cost, which is of great significance for large-scale water quality 351 
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monitoring.  352 

 353 
Figure 6. The long-term SD results of Selinco Lake and Hongze Lake between 1985 and 2020. Note: the 354 

color bar is the same as that in Fig. 5. 355 

 356 

Figure 7. The long-term SD curves of Selinco Lake and Hongze Lake. 357 

4.3. Long-term SD trend of lakes across China in the period 1985–2020  358 

The long-term variations in SD for lakes with an area > 0.01 km2 (N = 40,973) across China 359 

from 1985 to 2020 were first evaluated and recognized using our LAWSD30 products (Fig. 8). 360 

First, for lakes with an area ≤ 1 km2 (Fig. 8a), the mean SD of the lakes showed a significant 361 
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downward trend since 1985 (Z < 0, P < 0.05), with a rate of –0.055 m/year. However, it can be 362 

seen that the decline rate of SD began to slow down and stabilized after 2001 (with a rate of –363 

0.026 m/year after 2001). In addition, regarding lakes with areas > 1 km2 (Fig. 8b), the mean SD 364 

of the lakes around 2020 was basically the same as that in 1985, and the long-term SD of the 365 

lakes has not shown a significant downward trend since 1985 (Z < 0, P > 0.05). However, by 366 

carefully observing the time series SD curve of these lakes (Fig. 8b), an obvious turning point 367 

could be found around 2001. The SD of the lakes showed a significant downward trend (Z < 0, 368 

P < 0.05) before 2001, and began to increase significantly (Z > 0, P < 0.05) afterward. The above 369 

results demonstrate that the water clarity of lakes in China has continued to improve since the 370 

21st century, but the SD of lakes with an area ≤ 1 km2 is still low.  371 

 372 

Figure 8. The long-term trend in SD for lakes with an area > 0.01 km2 (N = 40,973) across China from 1985 373 

to 2020. (a) The mean SD of lakes ≤ 1 km2 across China; (b) the mean SD of lakes > 1 km2 across China. Note: 374 

IP., inflection point.  375 

In order to further evaluate the long-term SD trends of lakes in different geographic regions, 376 

China was divided into five limnetic regions (Ma et al., 2011; Chen et al., 2021), i.e., the Northeast 377 

Mountain Plain Region (NER), Eastern Plain Region (EPR), Yunnan–Guizhou Plateau Region 378 

(YGR), Qinghai–Tibet Plateau Region (QTR), and Mongolian–Xinjiang Plateau Region (MXR) 379 

(Fig. 9). The statistics of lakes with an area > 1 km2 and an area ≤ 1 km2 are shown in Fig. 9b and 380 

Fig. 9c, respectively. It can be seen that the number of lakes with an area ≤ 1 km2 in each region 381 

was far greater than that of lakes with an area > 1 km2, but their accumulation area was much 382 

smaller than that of lakes with an area > 1 km2. Furthermore, the number and area of lakes in 383 

QTR were the highest, while those in YGR were the lowest.   384 

Fig. 10 gives the long-term SD trend of lakes in each limnetic region. For lakes ≤ 1 km2 (Fig. 385 

10a–e), it can be seen that, except for MXR and QTR, the SD of the lakes in other regions did not 386 

show a significant decreasing trend (P > 0.05) during the entire analysis period. Moreover, the 387 

SD of small lakes (area ≤ 1 km2) in EPR and NER showed obvious increases (Z > 0, P < 0.05) since 388 

1985, with average change rates of 0.015 m/year and 0.005 m/year, respectively. Although the 389 

SD of small lakes in MXR and QTR experienced significant downward trends over the past 35 390 

years, the decline rates slowed down after the beginning of the 21st century (with rates of 0.001 391 

m/year in MXR and –0.045 m/year in QTR after 2001), and the decrease trend had not been 392 

significant since 2001 (Z < 0, P > 0.05). Secondly, as for lakes > 1 km2, there were no dramatic 393 

decreases in SD in any of the five regions from 1985 to 2020. Moreover, the lakes with an area > 394 

1 km2 in NER experienced a significant upward trend in water clarity (Z > 0, P < 0.05) over the 395 

past 35 years. Additionally, we can also see that the water clarity of lakes > 1 km2 in MXR and 396 

QTR significantly improved since the beginning of the 21st century. The SD of lakes > 1 km2 in 397 

YGR in 2020 was also higher than that in 1985. However, it should be noted that, although the 398 

SD of lakes > 1 km2 in 2020 was also greater than that in 1985 in EPR, the SD of these lakes was 399 
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characterized by a significant decrease, with a rate of –0.021 m/year after 2001.  400 

 401 

Figure 9. The location of the five limnetic regions and the lake statistics in each limnetic region. (a) The 402 

location of the five limnetic regions; (b) statistics of lakes with areas ≤ 1 km2 in each region; (c) statistics of 403 

lakes with areas > 1 km2 in each region.   404 

 405 

Figure 10. The long-term SD trend of lakes in each limnetic region from 1985 to 2020. (a–e) The long-term 406 

SD trend of lakes with an area ≤ 1 km2 in each region; (f–j) the long-term SD trend of lakes with an area > 407 

1 km2 in each region. Note: EPR., Eastern Plain Region; MXR., Mongolian–Xinjiang Plateau Region; NER., 408 

Northeast Mountain Plain Region; QTR., Qinghai–Tibet Plateau Region; YGR., Yunnan–Guizhou Plateau 409 

Region; IP., inflection point. 410 

4.4 Spatiotemporal patterns of water clarity in lakes over China 411 

https://doi.org/10.5194/hess-2021-630
Preprint. Discussion started: 23 February 2022
c© Author(s) 2022. CC BY 4.0 License.



15 
 

The spatiotemporal patterns of SD in lakes in the five limnetic regions from 1985 to 2020 are 412 

shown in Fig. 11. Overall, for lakes with an area ≤ 1 km2 and > 1 km2, the average proportions of 413 

lakes with an increasing SD trend were about 76.1% and 81.3%, respectively, in the five limnetic 414 

regions. In addition, the region with the lowest percentage of lakes tending to become clear 415 

(with an increasing trend) was still about 70.0%. The above results indicate that most lakes in 416 

China exhibited a tendency to become clear in the period 1985–2020. Specifically, as for lakes 417 

with areas ≤ 1 km2 (hereinafter referred to as small lakes), the minimum proportion of small 418 

lakes whose SD was characterized by an increasing trend was in the MXR (about 70.0%), while 419 

the maximum proportion appeared in the EPR (about 97.4%). In addition, for lakes with areas > 420 

1 km2 (hereinafter referred to as large lakes), the smallest and largest proportions of large lakes 421 

that had increasing trends were also in the MXR (about 77.0%) and the EPR (about 84.3%), 422 

respectively.   423 

Focusing on the detailed spatial–temporal SD patterns in each limnetic region, there were 424 

basically no small lakes with a decreasing trend in SD (2.6%) in the EPR. The individual small 425 

lakes that experienced downward trends in EPR were mainly located at the northernmost 426 

regions and at the junction of Hubei and Hunan Provinces. Moreover, as for the large lakes in 427 

the EPR, these were mainly distributed along the Yangtze River, and the lakes showing 428 

decreasing SD trends were mainly located in the middle reaches of the Yangtze River. Secondly, 429 

the MXR was the region with the minimum percentage of lakes that had an increasing trend 430 

among the five limnetic regions. Specifically, small lakes that exhibited decreasing trends were 431 

mainly located in the northeast and northwest of MXR, while large lakes that had decreasing 432 

trends were mainly distributed in the northeast areas of MXR. Additionally, in the NER, large 433 

and small lakes with decreasing SD were mainly distributed in the west and northeast of NER, 434 

accounting for 17.2% of small lakes and 16.1% of large lakes, respectively. Furthermore, in the 435 

QTR, most lakes were located in the north, center, and southeast. Among these lakes, most of 436 

the small lakes with a tendency to become turbid were located in the center, northeast, and 437 

southeast of QTR. In addition, the large lakes that were characterized by decreasing trends were 438 

mainly distributed in the central and northeast parts of the QTR. Lastly, as for the lakes in YGR, 439 

the small lakes that had a decreasing trend were mainly located in the northwest and southeast 440 

of YGR. In contrast, the number of large lakes in the YGR was relatively small (N = 53), and the 441 

lakes with a decreasing trend were mainly distributed in the southeast and west of YGR. 442 

Therefore, although most lakes had a tendency to become clearer from 1985 to 2020, there was 443 

still a considerable proportion of lakes whose SD experienced a downward trend over the past 444 

few decades, which suggests that effective water management is still required in many regions.  445 
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 446 

447 

448 
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449 

 450 
Figure 11. The spatiotemporal patterns of SD in lakes in the five limnetic regions from 1985 to 2020 (from 451 

left to right are the spatiotemporal patterns of lakes with an area ≤ 1 km2, and the spatiotemporal patterns 452 

of lakes with an area > 1 km2). Note: Sig., significant; Insig., insignificant. 453 

5. Discussion 454 

5.1. Consistency between the Landsat estimation SD results 455 

Recently, many studies have proved the feasibility of using long-term Landsat series data 456 

from GEE to assess the changes in lake clarity (Zhang et al., 2021b; Yin et al., 2021). In order to 457 

evaluate the comparability of our LAWSD30 dataset in monitoring long-term SD variations, the 458 

Landsat 5, 7, and 8 data for two adjacent tracks with overlapping areas were first selected to test 459 

the consistency between the Landsat estimation SD results (Fig. 12). The images of paths 139 460 

and 140 were chosen because the lakes in this place are hardly affected by human activities, and 461 

thus the SD of lakes can remain stable within a few days under stable hydrometeor conditions 462 

(Zhang et al., 2019b). The Landsat 5 images were taken on October 5, 2011, the Landsat 8 images 463 

were taken on October 21, 2017, and the Landsat 7 ETM + images were taken on October 6, 2011 464 

and October 22, 2017. Since the compared images were quasi-synchronized with each other in 465 

one day, the SD of water bodies was assumed to be the same for both images. Fig. 12c,d show 466 

scatterplots of the SD results for the overlapping regions. It can be seen that, although the model 467 

coefficients of the three sensors were different in our calculation (Section 3.2), there was still 468 

strong consistency between the SD results of Landsat 5, 7, and 8, with an R2 of 0.90 for Landsat 469 

5 vs. 7 and an R2 of 0.97 for Landsat 8 vs. 7. The above results prove that the estimated SD results 470 

from Landsat 5, 7, and 8 data are highly consistent.  471 

Moreover, since SD changes over time, and our LAWSD30 dataset was calculated based on 472 
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the BAP composites, it was also necessary to test the phenological consistency between the time-473 

series summer BAP composites. The mean DOY of each pixel in the BAP composites from 1985 474 

to 2020 was calculated and is shown in Fig. 13a. In addition, the maximum DOY difference of 475 

each pixel location in the BAP composites from 1985 to 2020 was calculated and displayed in 476 

Fig. 13b. From Fig. 13a, most areas of China were composites based on images around DOY 214, 477 

and the mean standard deviation was only 7.5 days. Therefore, the developed BAP composites 478 

can effectively ensure the consistency of phenology between different regions across China. In 479 

addition, from Fig. 13b, the mean value of the maximum DOY difference across China was only 480 

16.5 days, and the maximum DOY differences for most pixels across China (about 94%) were 481 

within 32 days. Although the maximum DOY difference in parts of southern China exceeded 32 482 

days due to the influence of clouds, most of these areas were mountainous with few lakes. In 483 

addition, since the phenology of these regions were in summer, and the SD is relatively stable 484 

during this season (Mccullough et al., 2012; Kloiber et al., 2002), the consistency of water clarity 485 

in these areas can thus be considered not to have much impact on the final result. Therefore, the 486 

results displayed in Figs. 12 and 13 confirm the reliability of our LAWSD30 dataset for 487 

evaluating the long-term SD across China.    488 

 489 

Figure 12. Overlapping regions of Landsat 5 and 7 data (a) and Landsat 8 and 7 data (b); lake SD 490 

comparison for the Landsat 7 vs. Landsat 5 data (c) and the Landsat 7 vs. Landsat 8 data (d) for the lakes 491 

from the overlap. 492 
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 493 

Figure 13. The mean DOY of each pixel in the BAP composites from 1985 to 2020 (a) and the maximum 494 

DOY difference of each pixel location in the BAP composites from 1985 to 2020 (b). Note: S.D., standard 495 

deviation. 496 

5.2. Cross-comparison with existing water clarity monitoring studies 497 

To date, some past studies have also evaluated the water clarity of specific lakes in China 498 

(Shen et al., 2020; Wang et al., 2020). In order to further analyze the reliability of our estimated 499 

SD results across China, the results of this study were assessed against other existing water 500 

clarity monitoring studies. However, since most of the existing investigations focused on the 501 

annual average SD (Zhang et al., 2021b; Li et al., 2020a; Yin et al., 2021), and our LAWSD30 502 

dataset is a summer SD dataset, it is a challenge to compare our results with other researches 503 

due to the different periods of interest. Fortunately, Wang et al. (2020) recently generated a time-504 

series summer SD dataset (for the period 2000–2017) for lakes > 25 km2 in China using water 505 

color parameters and MODIS data. Additionally, Shen et al. (2020) developed a multiyear 506 

monthly SD dataset (2016-2020) for 86 lakes in eastern China using Sentinel 3 images and a 507 

random forest regression SD model. Since both of the studies included SD results in summer, 508 

we had a unique opportunity to compare our SD estimates with them. The summer mean SD 509 

for each lake in the MODIS and the Sentinel 3-derived SD datasets was calculated and compared 510 

with our LAWSD30 dataset. As shown in Fig. 14, our LAWSD30 agreed well with both the 511 

MODIS and Sentinel 3-derived SD results. An average R2 of 0.96 and an average RMSE of 0.409 512 

m was achieved when compared with the MODIS-derived results (Fig. 14a,b). In addition, an R2 513 

of 0.74 and an RMSE of 0.109 m were shown in the comparison between the Sentinel 3-derived 514 

SD and our LAWSD30 dataset (Fig. 14c). Thus, the above results confirm the reliability of our 515 

long-term LAWSD30 dataset.   516 

 517 

https://doi.org/10.5194/hess-2021-630
Preprint. Discussion started: 23 February 2022
c© Author(s) 2022. CC BY 4.0 License.



20 
 

Figure 14. (a,b) Scatterplots of our LAWSD30 data and the corresponding MODIS-derived SD data (Wang 518 

et al., 2020) in the 2000s (2001, 2004, and 2007) and 2010s (in 2010, 2013, and 2016), respectively; (c) 519 

scatterplot of our LAWSD30 data and the corresponding Sentinel 3-derived SD data (Shen et al., 2020) in 520 

2016 and 2019. 521 

6. Conclusions  522 

Water clarity is one of the most intuitive and important indicators to reflect the 523 

comprehensive conditions in water bodies. In order to improve our understanding of the long-524 

term spatiotemporal patterns of lake water clarity in China, a long-term LAWSD30 dataset with 525 

a three-year temporal interval was first developed for the period 1985–2020 using Landsat series 526 

data and the GEE platform. The dataset exhibited good performance when compared with 527 

concurrent in situ SD measurements (with an R2 of 0.86 and a RMSE of 0.225 m), thus confirming 528 

the reliability of our LAWSD30 dataset. 529 

Subsequently, based on the generated LAWSD30 dataset, the national-scale long-term SD 530 

estimations of lakes in China (N = 40,973) over the past 35 years were analyzed. It was found 531 

that the SD of lakes with an area ≤ 1 km2 showed a significant decreasing trend during the period 532 

1985–2020, but the decline rate began to slow down and stabilized after 2001. Regarding the SD 533 

of the lakes with an area > 1 km2, a significant downward trend was seen before 2001, and it 534 

began to increase significantly afterwards. In addition, in terms of the spatial patterns, the small 535 

lakes showing a decreasing SD trend during 1985–2020 accounted for the largest proportion in 536 

MXR (about 30.0%), followed by YGR (23.8%), QTR (20.4%), NER (17.2%), and EPR (2.6%). 537 

Additionally, for large lakes, this proportion was the largest in MXR (about 23.0%), followed by 538 

QTR (19.4%), YGR (18.9%), EPR (17.7%), and NER (16.1%). The above results indicate that, 539 

although the clarity of lakes in China has shown an improving trend since the 21st century, there 540 

has still been a considerable proportion of lakes experiencing a downward SD trend over the 541 

past few decades. This study can give an effective guidance for the management and restoration 542 

of lake water environment.   543 
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